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= Keywords: boundary layer water clouds,
structure & radiation, climate

Airplanes
Tethered balloons
Satellites

Regional network with lidar,
Ir-radiometers

Ground based remote sensing
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= BBC1: August, September 2001
= BBC2: May 2003
= Chaotic skies, typically Dutch cloudscapes
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= BBC1: August, September 2001
= BBC2: May 2003

= Chaotic skies, typically Dutch cloudscapes
— High quality measurements for testing

Open database

— ftp://bbc.knmi.nl

Beautiful measurements,
but modellers need 3D fields

Dimensionally challenged




Motivation

= Can not measure a full 3D cloud field

= Can measure many (statistical) cloud
properties

= Generate cloud field based on
measurements

= Emphasis on good structure for
radiative transfer
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= Distribution

— Amplitude (LWP, LWC, ) alone is already
good

— Success of Independent Pixel
Approximation (IPA) at large scales

Measured
[ ] Surrogate
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Structure & radiation

= Power spectrum
— Spatial linear correlations

= Full spectrum




Measured power

= Scale breaks
= \Naves
= | and sea mask

Satellite pictures: Eumetsat




Validation surrogate clouds

= |s this statistical description good enough?

3D LWC fields from LES modelling
Make surrogates from their statistics

Calculate radiative properties

— Radiances
(remote sensing; Steffen Meyer)

— lrradiances
(radiative budget; Sebastian Gimeno Garcia)

— Actinic fluxes
(chemistry; Anke Kniffka)

Compare them




3D template (LES, FIRE,0110)
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= |rradiances

— RMSE mean: < 0.03 % of the radiative
budget

— Monte Carlo error, statistically not
significant
= Radiances
— RMSE mean: < 0.3 %
— Monte Carlo error, statistically not
o significant
= Actinic flux

- — RMSE mean: < 1.4 %

— No error estimate (SHDOM)




Validation results

= Fields with only one statistic
(i.e. PDF or Fourier)

— clearly worse
— statistically significant

= The statistical description is probably

good enough
— LES stratocumulus and within 1 %
— Limitation is likely the amount of data




Validation cumulus

= Developed a more  SLCUEITED
accurate Stochastic '
IAAFT algorithm

= Surrogates are
copies of templates

* |n practise the bias
IS likely still there as
you cannot measure
the power spectrum
that accurately
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Validation broken clouds

LES originals Surrogates

3D template 3D surrogate
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LES: Frederick Chosson
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= Original problem
— Generate a cloud similar to measurements

= New problem

— Based on limited data estimate:
= distribution
= power spectrum
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= Scanning measurement
= Estimate 2D-autocorrelation function
= 2D anisotropic power spectrum
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= Option: PDF field is measured PDF

= However!
— Inhomogeneous (non-stationary) field
— Underestimate the width distribution




= Relative reduction In variance
= /Zenith measurement
= Simulated on LES clouds




= Correcting
— Frank Evans

= More data
= Spread

=3Scanning
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= Distribution
as a function
of height




Added: Local values

= |nput from scanning
measurement
— Amplitude distribution
— 2D power spectrum

— The measured
values on the spiral
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Added: Local constraint & mask

Template-sparse cumulus: : £ surrogate-without cloud mask -

f
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Surrogate with
cloud mask




Added: Coarse means

Original Surrogate
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Added: Coarse means & mask
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= Closure studies

— Bring micro-physics and radiation together

— Poster: 3D surrogates from in situ
measurements (Sebastian Schmidt,
Ronald Scheirer, Francesca Di Giuseppe)

= Structure studies
= Fractal generator
o Geophysics




i Applications
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= Closure studies

= Structure studies
— How good is the fractal approximation?

— How accurate do you need to know the
PDF?

= Fractal generator
o Geophysics
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= 2D tdMAP clouds
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: = |AAFT surrogates
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— Full structure
— Only correlations at small scales

= Compare radiative properties




2D & 3D reflectance

BBC2: 2D VS. 3D surrogotes R ¥=0°, 3D
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i Applications
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= Closure studies
= Structure studies

= Fractal generator
— Sensitivity studies
= Retrievals and parameterisations
— Spectrum and PDF varied independently
— Broad-band radiometer EarthCARE

M| = Jaime F. Gimeno (University of Valencia) &
| Howard Barker
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- o Geophysics




Applications

= Closure studies
= Structure studies
= Fractal generator

o Solil temperature fields LES

o Rain fields

o Downscaling low resolution atmospheric models
to high resolution hydrological models

0 Surrogate run-off
o Wind stress fields
o Soil properties

o ...
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@ay Comparison cloud generators

3,2: 3D, 2D; S: Structure; P: PDF;
L: Local values; M: Mask

IAAFT method
Cumulus fields (Evans; structure of a binary mask)

CLABAUTAIR (Scheirer and Schmidt)
Shift cloud (Schmidt; Los and Duynkerke)

2D-2D Ice cloud (Liou et al.)

tdMAP (A. Benassi, F. Szczap, et al.)
Multi-fractal clouds

Bounded Cascade and other fractal clouds
Fourier method

— SITCOM (F. di Giuseppe; 2D structure)

— lce clouds (R. Hogan, S. Kew; 2.5D structure)




Conclusions

= Developed/extended an algorithm
— Full 3D structure
— LWC height profile
— Local measured constraints (fine or coarse)
— Cloud mask

= Advantages
— Flexible
— Dimensions
— Instruments
— Vary the statistics easily and independently




More information
= Homepage
— Papers, Matlab-programs, examples

= http://www.meteo.uni-bonn.de/
venema/themes/surrogates/

= Google: surrogate clouds

= BBC campaign surrogates
— ftp://bbc.knmi.nl/bbc1/model/

= Victor.Venema@uni-bonn.de




Constrained surrogates

= Arbitrary constraints
Evolutionary search algorithm

Better convergence

Try new statistics
Fractal geometry for cloud boundaries
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Evolutionary search algorithm




Constrained surrogates

= height profiles
— cloud base
— cloud top
— cloud cover
— average LWC

= Histograms
— LWP
— LWC
— number of layers
= Power spectra & length
— LWP
— Highest cloud top
— Lowest cloud base




Coarse mean surrogates

" |[nput
— Local coarse mean LWP, 1
— Local coarse mean cloud fraction

— Power spectrum, extrapolated to small
scales

= Combine satellite and ground based or
In situ measurements

— Measured small scale spectrum or PDF

= Downscaling models
— A priory small scale spectrum
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Instruments i

= 3 microwave radiometers,
= 3 cloud radars,

= 4 Micro Rain Radars (MRRs),

= 2 wind profiler-RASS systems, to measure
wind and temperature profiles,

4 |idar cellometers,
2 lidars

numerous radiation, precipitation, turbulence
and meteorological instruments.
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LES Surrogates - Radiation
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LES Surrogates - Radiation
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